KaTeXで数式を書く
改行
$$
\begin{aligned}
x^2 - (a + b)x + ab = 0 \\
(x - a) (x - b) = 0 \\
x = a, b
\end{aligned}
$$揃える
$$
\begin{aligned}
x^2 - (a + b)x + ab &= 0 \\
(x - a) (x - b) &= 0 \\
x &= a, b
\end{aligned}
$$空白
$$
\begin{aligned}
x^2 - (a + b)x + ab &= 0 \\
(x - a) (x - b) &= 0 \\
x &= a, \qquad\quad b
\end{aligned}
$$添字
x^{2} ->
x^{2+i} ->
x_{i} ->
x_{i-1} ->
x^{2}_{i} ->
x_{i}^{2} ->
{x_{i}}^{2} ->
{x^{2}}_{i} ->
x^{y^{2}} ->
x^{y_{2}} ->
x_{y_{i}} ->
x_{y^{2}} ->
x^{\prime} ->
{}^{\forall}x ->
{}^{\exists}x ->
{}_{n}C_{r} ->
分数
\frac{1}{2} ->
y = \frac{1}{x+1} ->
根号記号
\sqrt[1]{2} ->
L = \int_{b}^{a} \sqrt{ \left( \frac{dx}{dt} \right)^{2} + \left( \frac{dy}{dt} \right)^{2} } dt ->
シグマ記号
\sum ->
\sum^{n}_{k=1}(a_{k}+b_{k}) = \sum^{n}_{k=1}a_{k} + \sum^{n}_{k=1}b_{k} ->
積分記号
\int ->
\int^{b}_{a}f(x)dx = \int^{c}_{a}f(x)dx + \int^{b}_{c}f(x)dx ->
省略記号
\ldots ->
\vdots ->
\cdots ->
\ddots ->
\left( \begin{array}{rrcr}
1 & 2 & \cdots & n \\
2 & 4 & \cdots & 2n \\
\vdots & \vdots & \ddots & \vdots \\
m & m\cdot 2 & \cdots & m\cdot n
\end{array} \right) \;\;\; (n , m = 0, 1, 2, \ldots)->
文字修飾記号
\vec{x} ->
\hat{x} ->
\dot{x} ->
\acute{x} ->
\check{x} ->
\bar{x} ->
\tilde{x} ->
\ddot{x} ->
\grave{x} ->
\breve{x} ->
\vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{e} + \vec{f} ->
上線
\overline{A} \cup \overline{B} = \overline{A \cap B} ->
否定記号
a \neq b ->
その他の数学記号
\log ->
\sin ->
\cos ->
\tan ->
\max ->
\min ->
\gcd ->
\det ->
\exp ->
\ln ->
\pm ->
\mp ->
\times ->
\div ->
\ast ->
\star ->
\circ ->
\bullet ->
\cdot ->
\bigcirc ->
\setminus ->
\wr ->
\in ->
\ni ->
\cap ->
\cup ->
\vee ->
\wedge ->
\subset ->
\subseteq ->
\supset ->
\supseteq ->
\oplus ->
\ominus ->
\otimes ->
\oslash ->
\leq ->
\geq ->
\ll ->
\gg ->
\neq ->
\equiv ->
\sim ->
\cong ->
\propto ->
\approx ->
\parallel ->
\perp ->
\emptyset ->
\angle ->
\langle ->
\rangle ->
\lfloor ->
\rfloor ->
\lceil ->
\rceil ->
\infty ->
\partial ->
\prime ->
\ell ->
\imath ->
\jmath ->
\surd ->
\nabla ->
\forall ->
\exists ->
\neg ->
\backslash ->
\prod ->
\coprod ->
\dagger ->
\ddagger ->
\aleph ->
\sharp ->
\flat ->
\natural ->
\triangleleft ->
\triangleright ->
\bigtriangleup ->
\bigtriangledown ->
\triangle ->
\Box ->
\Diamond ->
\diamond ->
\clubsuit ->
\diamondsuit ->
\heartsuit ->
\spadesuit ->
矢印記号
\leftarrow ->
\longleftarrow ->
\uparrow ->
\Leftarrow ->
\Longleftarrow ->
\Uparrow ->
\rightarrow ->
\longrightarrow ->
\downarrow ->
\Rightarrow ->
\Longrightarrow ->
\Downarrow ->
\leftrightarrow ->
\longleftrightarrow ->
\updownarrow ->
\Leftrightarrow ->
\Longleftrightarrow ->
\Updownarrow ->
\mapsto ->
\longmapsto ->
\nearrow ->
\hookleftarrow ->
\hookrightarrow ->
\searrow ->
\leftharpoonup ->
\rightharpoonup ->
\swarrow ->
\leftharpoondown ->
\rightharpoondown ->
\nwarrow ->
\rightleftharpoons ->
基本的な数学記号
\int -> ->
\int_{0}^{\infty} -> ->
\sum -> ->
\sum_{n = 1}^{\infty} -> ->
\lim -> ->
\lim_{n \to -\infty} -> ->
数式モードでの空白制御
a\;b ->
a\:b ->
a\,b ->
a\!b ->
\int\int_{G}f(x,y)dxdy ->
\int\!\!\!\int_{G}f(\,x,\,y\,)\;\,dx\:dy ->
ギリシャ文字
\Gamma ->
\Delta ->
\Theta ->
\Lambda ->
\Xi ->
\Pi ->
\Sigma ->
\Upsilon ->
\Phi ->
\Psi ->
\Omega ->
\alpha ->
\beta ->
\gamma ->
\delta ->
\epsilon ->
\varepsilon ->
\zeta ->
\eta ->
\theta ->
\vartheta ->
\iota ->
\kappa ->
\lambda ->
\mu ->
\nu ->
\xi ->
\pi ->
\varpi ->
\rho ->
\varrho ->
\sigma ->
\varsigma ->
\tau ->
\upsilon ->
\phi ->
\varphi ->
\chi ->
\psi ->
\omega ->
大きさの変化する括弧,矢印記号
( \frac{x}{z} )^{2} + \left( \frac{y}{z} \right)^{2} = 1 ->
f(x) = \left\{ \frac{( x + 1 )( x + 2 )}{x}\right\} ->
行列を書く
\left( \begin{array}{rr}
a & b \\ c & d
\end{array} \right) \left( \begin{array}{r}
x \\ y
\end{array} \right) = 0 \; \Longleftrightarrow \; \left\{
\begin{array}{rrrrr}
ax & + & by & = & 0 \\
cx & + & dy & = & 0
\end{array} \right.->